1. Let A and B be matrices of order 3×3 .

If
$$|A| = \frac{1}{2\sqrt{2}}$$
 and $|B| = \frac{1}{729}$, then what is the value of $|2B(adj(3A))|$?

(a) 27

(b)
$$\frac{-27}{2\sqrt{2}}$$

(c)
$$\frac{27}{2}$$

(d) 1

11. Consider the following statements in respect of two non-singular matrices A and B of the same order n:

1.
$$adj(AB) = (adjA)(adjB)$$

$$2. adj(AB) = adj(BA)$$

3. $(AB)adj(AB) - |AB|I_n$ is a null matrix of order n

How many of the above statements are correct?

- (a) None
- (b) Only one statement
- (c) Only two statements
- (d) All three statements

- 12. Consider the following statements in respect of a non-singular matrix A of order n:
 - 1. $A(adjA^T) = A(adjA)^T$
 - 2. If $A^2 = A$, then A is identity matrix of order n
 - 3. If $A^3 = A$, then A is identity matrix of order n

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

- 16. Consider the following statements in respect of a skew-symmetric matrix A of order 3:
 - 1. All diagonal elements are zero.
 - 2. The sum of all the diagonal elements of the matrix is zero.
 - 3. A is orthogonal matrix.

Which of the statements given above are correct?

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

19. For what value of n is the determinant

$$|C(9,4) \quad C(9,3) \quad C(10,n-2)|$$

 $|C(11,6) \quad C(11,5) \quad C(12,n)| = 0$
 $|C(m,7) \quad C(m,6) \quad C(m+1,n+1)|$

for every m > n?

- (a) 4
- (b) 5
- (c) 6
- (d) 7

- 26. If a, b, c are in AP; b, c, d are in GP; c, d, e are in HP, then which of the following is/are correct?
 - 1. a, c and e are in GP

2.
$$\frac{1}{a}$$
, $\frac{1}{c}$, $\frac{1}{e}$ are in GP

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

29. If
$$A = \begin{bmatrix} \sin 2\theta & 2\sin^2 \theta - 1 & 0 \\ \cos 2\theta & 2\sin \theta \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then

which of the following statements is/are correct?

$$1. A^{-1} = adjA$$

2. A is skew-symmetric matrix

3.
$$A^{-1} = A^T$$

Select the correct answer using the code given below:

- (a) 1 only
- (b) 1 and 2
- (c) 1 and 3
- (d) 2 and 3

74. What is $\int_{-1}^{1} (3\sin x - \sin 3x) \cos^2 x dx$ equal to?

(a)
$$-\frac{1}{4}$$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{1}{4}$$

items that follow.

Let
$$\varphi(a) = \int_a^{a+100\pi} |\sin x| dx$$

- 89. What is $\varphi(a)$ equal to?
 - (a) 0
 - (b) a
 - (c) 100a
 - (d) 200
- 90. What is $\varphi'(a)$ equal to ?
 - (a) 0
 - (b) π
 - (c) 100
 - (d) 200

1. If ω is a non-real cube root of 1, then

what is the value of $\left| \frac{1-\omega}{\omega + \omega^2} \right|$?

(a)
$$\sqrt{3}$$

(b)
$$\sqrt{2}$$

(c) 1

(d)
$$\frac{4}{\sqrt{3}}$$

- 4. Let A be a matrix of order 3×3 and |A| = 4. If $|2 \text{ adj}(3A)| = 2^{\alpha}3^{\beta}$, then what is the value of $(\alpha + \beta)$?
 - - (a) 12

- 6. Let A and B be symmetric matrices of same order, then which one of the following is correct regarding (AB BA)?
 - Its diagonal entries are equal but nonzero
 - 2. The sum of its non-diagonal entries is zero

Select the correct answer using the code given below:

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

13. If a, b, c are in AP, then what is

$$\begin{vmatrix} x+1 & x+2 & x+3 \\ x+2 & x+3 & x+4 \\ x+a & x+b & x+3 \end{vmatrix}$$
 equal to ?

- (a) -1
- (b) 0
- (c) 1
- (d) 2

- 15. If $2^{\frac{1}{c}}$, $2^{\frac{b}{ac}}$, $2^{\frac{1}{a}}$ are in GP, then which one of the following is correct?
 - (a) a, b, c are in AP

 - (b) a, b, c are in GP (c) a, b, c are in HP
 - (d) ab, bc, ca are in AP

$$f(x) = \frac{2x+3}{3x+5}, x \in A. \text{ If } f \text{ is to be onto,}$$

then what are
$$A$$
 and B equal to ?

(a)
$$A = R \setminus \{-\frac{5}{3}\}$$
 and $B = R \setminus \{-\frac{2}{3}\}$

(b)
$$A = R$$
 and $B = R \setminus \{-\frac{5}{3}\}$

(c)
$$A = R \setminus \{-\frac{3}{2}\}$$
 and $B = R \setminus \{0\}$

(d)
$$A = R \setminus \{-\frac{5}{3}\}$$
 and $B = R \setminus \{\frac{2}{3}\}$

- 27. Consider the following statements for a fixed natural number n:
 - 1. C(n, r) is greatest if n = 2r
 - 2. C(n, r) is greatest if n = 2r 1 and n = 2r + 1

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

P(x, y) is any point on the ellipse $x^2 + 4y^2 = 1$. Let E, F be the foci of the ellipse.

57. What is
$$PE + PF$$
 equal to?

- (a) 1
- (b) 2
- (c) 3
 - 4

Let A(1, -1, 2) and B(2, 1, -1) be the end points of the diameter of the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz - 1 = 0$.

61. What is u + v + w equal to?

- (a) -2
- (b) -1
- (c) 1
- (d) 2

62. If P(x, y, z) is any point on the sphere, then what is $PA^2 + PB^2$ equal to?

- (a) 15
- (b) 14
- (c) 13
- (d) 6.5

If $z\overline{z} = z + \overline{z} $, where $z = x + iy$, $i = x$
then the locus of z is a pair of:

rectangular hyperbolas

straight lines

parabolas

circles

If A, B and C are square matrices of order 3 and det(BC) = 2 det(A), then what is the value of $det(2A^{-1}BC)$?

- (a) 16

8

(c) 4

(b)

(d)

Let A be a skew-symmetric matrix of order 3.

What is the value of

 $det(4A^4) - det(3A^3) + det(2A^2) - det(A) + det(-I)$ where I is the identity matrix of order 3?

- (a) -1
- (b) 0
- (c) 1
- (d) 2

8. If
$$A = \begin{bmatrix} 0 & 3 & 4 \\ -3 & 0 & 5 \\ -4 & -5 & 0 \end{bmatrix}$$
, then which one of the

$$\begin{bmatrix} -4 & -5 \end{bmatrix}$$

following statements is correct?

(a) A^2 is symmetric matrix with $det(A^2) = 0$.

(b) A^2 is symmetric matrix with $det(A^2) \neq 0$.

(c) A² is skew-symmetric matrix with $\det(A^2) = 0.$

(d) A² is skew-symmetric matrix with $det(A^2) \neq 0$.

If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
, then which of the following

statements are correct?

- Aⁿ will always be singular for any positive integer n.
- 2. Aⁿ will always be a diagonal matrix for any positive integer n.
- 3. Aⁿ will always be a symmetric matrix for any positive integer n.

Select the correct answer using the code given below:

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

7. If
$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, then what is the value

of det[adj(adjA)]?

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then what is

$$23A^3 - 19A^2 - 4A$$
 equal to?

- (a) Null matrix of order 3
- (b) Identity matrix of order 3

$$\begin{array}{c|cccc}
 & 2 & 0 & 0 \\
 0 & 2 & 0 \\
 0 & 0 & 2
\end{array}$$

9. The value of the determinant of a matrix A of order 3 is 3. If C is the matrix of cofactors of the matrix A, then what is the value of determinant of C²?

- (a) 3
- (b) 9
- (c) 81
- (d) 729

20. If $A_k = \begin{bmatrix} k-1 & k \\ k-2 & k+1 \end{bmatrix}$, then what is $\det(A_1) + \det(A_2) + \det(A_3) + ... + \det(A_{100})$ equal to ?

- (a) 100
- (b) 1000
- (c) 9900
- (d) 10000

6. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & \sin\theta & -\cos\theta \end{pmatrix}$$
, then which

of the following are correct?

- 1. A + adjA is a null matrix
- 2. $A^{-1} + adjA$ is a null matrix
- 3. $A A^{-1}$ is a null matrix

Select the correct answer using the code given below:

- (a) 1 and 2 only
- (b) 2 and 3 only
- (c) 1 and 3 only
- (d) 1, 2 and 3

Consider the following for the next three (03) items that follow:

Let
$$A = \begin{bmatrix} 0 & \sin^2 \theta & \cos^2 \theta \\ \cos^2 \theta & 0 & \sin^2 \theta \\ \sin^2 \theta & \cos^2 \theta & 0 \end{bmatrix}$$
 and

A = P + Q where P is symmetric matrix and Q is skew-symmetric matrix.

37. What is P equal to?

(a)
$$\begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

(c)
$$\cos 2\theta \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

(d)
$$\cos 2\theta \begin{pmatrix} 0 & -1/2 & 1/2 \\ 1/2 & 0 & -1/2 \\ -1/2 & 1/2 & 0 \end{pmatrix}$$

38. What is Q equal to?

(a)
$$\begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

(c)
$$\cos 2\theta \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

(d)
$$\cos 2\theta \begin{pmatrix} 0 & -1/2 & 1/2 \\ 1/2 & 0 & -1/2 \\ -1/2 & 1/2 & 0 \end{pmatrix}$$

- 3. Consider the following statements:
 - 1. The degree of the differential equation $\frac{dy}{dx} + \cos\left(\frac{dy}{dx}\right) = 0$ is 1.
 - 2. The order of the differential equa-

tion
$$\left(\frac{d^2y}{dx^2}\right)^3 + \cos\left(\frac{dy}{dx}\right) = 0$$
 is 2.

Which of the statements given above is/are correct?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

3. If Δ is the value of the determinant

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

then what is the value of the following determinant?

$$\begin{vmatrix} pa_1 & b_1 & qc_1 \\ pa_2 & b_2 & qc_2 \\ pa_3 & b_3 & qc_3 \end{vmatrix}$$

$$(p \neq 0 \text{ or } 1, q \neq 0 \text{ or } 1)$$

- (a) $p\Delta$
- (b) $q\Delta$
- (c) $(p+q)\Delta$
- (d) pq∆

(a)
$$2^n$$

(b)
$$2^n - 1$$

(c)
$$2^{n-1}$$

(d)
$$2^n - 2$$

5. If a+b+c=4 and ab+bc+ca=0, then what is the value of the following determinant?

$$(b) -64$$

$$(c)$$
 -128

- 11. If A and B are two matrices such that AB is of order n×n, then which one of the following is correct?
 - (a) A and B should be square matrices of same order.
 - (b) Either A or B should be a square matrix.
 - (c) Both A and B should be of same order.
 - (d) Orders of A and B need not be the same.

- 14. If A and B are square matrices of order 2 such that det(AB) = det(BA), then which one of the following is correct?
- (a) A must be a unit matrix.
- (b) B must be a unit matrix. Both A and B must be unit

matrices.

(d) A and B need not be unit matrices.

19. What is the value of the following?

tan 31° tan 33° tan 35° ... tan 57° tan 59°

(a) -1

b) 0

(c) 1

d) 2

•

30. If $3\cos\theta = 4\sin\theta$, then what is the value of $\tan(45^\circ + \theta)$?

(a) 10

(b) 7

(c) $\frac{7}{2}$

(d) $\frac{7}{4}$