## A square matrix A is called orthogonal, if (a) $A = A^2$ **(b)** $A' = A^{-1}$ (c) $A = A^{-1}$ (d) A = A'

where A' is the transpose of A.

What is the value of

$$\left(\frac{-1+i\sqrt{3}}{2}\right)^{3n}+\left(\frac{-1-i\sqrt{3}}{2}\right)^{3n},$$

where  $i = \sqrt{-1}$ ?

## **(b)** 2 (a) 3 (c) 1 (d) 0

Let  $T_r$  be the  $r^{th}$  term of an AP for r = 1, 2, 3, ...If for some distinct positive integers m and n

We have 
$$T_m = \frac{1}{n}$$
 and  $T_n = \frac{1}{m}$ , then what is  $T_{mn}$ 

we have 
$$T_m = \frac{1}{n}$$
 and  $T_n = \frac{1}{m}$ , then what is  $T_{mn}$ 

e have 
$$T_m = \frac{1}{n}$$
 and  $T_n = \frac{1}{m}$ , then what is  $T_m$  jual to?

equal to? (a)  $(mn)^{-1}$ **(b)**  $m^{-1} + n^{-1}$ 

equal to?
(a) 
$$(mn)^{-1}$$
 (b)  $m^{-1} + n^{-1}$ 
(c) 1 (d) 0

Consider the following in respect or matrices A and B of same order:

and B of same order:  
(1) 
$$A^2 - B^2 = (A + B) (A - B)$$

(2)  $(A - I) (I + A) = O \Leftrightarrow A^2 = 1$ where I is the identity matrix and O is the null

matrix. Which of the above is/are correct?

**(b)** 2 only (a) 1 only (d) Neither 1 nor 2 (c) Both 1 and 2

Consider the following statements:

- (1) The distance between the lines  $y = mx + c_1$  and  $y = mx + c_2$  is  $\frac{|c_1 c_2|}{\sqrt{1 + m^2}}$ .
- (2) The distance between the lines  $ax + by + c_1 = 0$  and  $ax + by + c_2 = 0$  is  $|c_1 c_2|$

$$\frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}.$$

(3) The distance between the lines  $x = c_1$  and  $x = c_2$  is  $|c_1 - c_2|$ .

Which of the above statements are correct?

- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3

What is the area of the triangle with vertices

$$\left(x_1, \frac{1}{x_1}\right), \left(x_2, \frac{1}{x_2}\right), \left(x_3, \frac{1}{x_3}\right)$$
?

(a) 
$$|(x_1-x_2)(x_2-x_3)(x_3-x_1)|$$

(c) 
$$\frac{\left|\frac{(x_1-x_2)(x_2-x_3)(x_3-x_1)}{x_1x_2x_3}\right|}{x_1x_2x_3}$$

(d) 
$$\frac{\left(x_1-x_2\right)(x_2-x_3)(x_3-x_1)}{2x_1x_2x_3}$$

If 
$$|\vec{a}| = 3, |\vec{b}| = 4$$
 and  $|\vec{a} - \vec{b}| = 5$ , then what is the value of  $|\vec{a} + \vec{b}|$ ?

(a) 8 (b) 6

(d) 5

(c)  $5\sqrt{2}$ 

What is 
$$\int e^{\ln(\tan x)} dx$$
 equal to?  
(a)  $\ln|\tan x| + c$  (b)  $\ln|\sec x| + c$   
(c)  $\tan x + c$  (d)  $e^{\tan x} + c$ 

(c)  $\tan x + c$ 

- Consider the following statements:
- (1) If 10 is added to each entery on a list, then the average increases by 10.
- (2) If 10 is added to each entry on a list, then the standard deviation increases by 10.
- (3) If each entry on a list is doubled, then the average doubles.

Which of the above statements are correct?

- (a) 1, 2 and 3 (b) 1 and 2 only
- (c) 1 and 3 only (d) 2 and 3 only

The variance of 25 observations is 4. If 2 is added to each observation, then the new variance of the resulting observations is (b) 4 (a) 2

(c) 6

(d) 8

If the regression coefficient of Y on X is -6, and the correlation coefficient between X and Y is

the correlation coefficient between X and Y is 
$$-\frac{1}{2}$$
, then the regression coefficient of X on Y

$$-\frac{1}{2}$$
, then the regression coefficient of X on Y would be

(a)  $\frac{1}{24}$  (b)  $-\frac{1}{24}$ 

| What is the number of diagonals of an octagon? |                 |  |  |  |
|------------------------------------------------|-----------------|--|--|--|
| (a) 48                                         | <b>(b)</b> 40   |  |  |  |
| (c) 28                                         | ( <b>d</b> ) 20 |  |  |  |

What is C(47, 4) + C(51, 3) + C(50, 3) + C(49, 3) + C(48, 3) + C(47, 3) equal to? (a) C(47, 4) (b) C(52, 5)

(c) C(52, 4)

(d) C(47, 5)

| What is the value of |               |  |
|----------------------|---------------|--|
| 1-2+3-4+5            | + 101 ?       |  |
| (a) 51               | <b>(b)</b> 55 |  |
| (c) 110              | (d) 111       |  |

| If the sum of f              | first $n$ terms of a series is $(n + 12)$ , |  |  |  |
|------------------------------|---------------------------------------------|--|--|--|
| then what is its third term? |                                             |  |  |  |
| (a) 1                        | <b>(b)</b> 2                                |  |  |  |
| (c) 3                        | (d) 4                                       |  |  |  |

If 
$$\alpha$$
 and  $\beta$  are the roots of  $x^2 + x + 1 = 0$ , then what is  $\sum_{j=0}^{3} (\alpha^j + \beta^j)$  equal to ?

(d) 2

(c) 4

If 
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ , then which one of

- the following is correct?

  (a) Both AB and BA exist
- (b) Neither AB nor BA exists
- (c) AB exists but BA does not exist
- (d) AB does not exist but BA exists

Let 
$$A \cup B = \{x | (x - a)(x - b) > 0$$
, where  $a < b\}$ , what are A and B equal to?  
(a)  $A = \{x | x > a\}$  and  $B = \{x | x > b\}$ 

**(b)**  $A = \{x \mid x < a\} \text{ and } B = \{x \mid x > b\}$ 

(c)  $A = \{x \mid x < a\}$  and  $B = \{x \mid x < b\}$ (d)  $A = \{x \mid x > a\}$  and  $B = \{x \mid x < b\}$ 

Let S<sub>n</sub> be the sum of the first n terms of an AP. If  $S_{2n} = 3n + 14n^2$ , then what is the common difference? **(b)** 6 (a) 5

(c) 7

(d)9

## A binary number is represented by $(cdccddcccddd)_2$ where c > d, what is its decimal equivalent? (a) 1848 **(b)** 2048

(d) 2872

(c) 2842

If the angle between the lines joining the end points of minor axis of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 

with one of its foci is  $\frac{\pi}{2}$ , then what is the

eccentricity of the ellipse?

(a) 
$$\frac{1}{2}$$
 (b)  $\frac{1}{\sqrt{2}}$ 

(c) 
$$\frac{\sqrt{3}}{2}$$
 (d)  $\frac{1}{2}$ 

What is 
$$\sin (\alpha + \beta) - 2\sin \alpha \cos \beta + \sin (\alpha - \beta)$$
 equal to?

(a) 0 (b)  $2\sin \alpha$ 

(d)  $\sin \alpha + \sin \beta$ (c)  $2\sin \beta$ If  $2\tan A = 3\tan B = 1$ , then what is  $\tan (A - B)$ equal to?

(b) 
$$\frac{1}{6}$$

(a)  $\frac{1}{5}$ (b)  $\frac{1}{6}$ (c)  $\frac{1}{7}$ 

What is the moment about the point  $\hat{i} + 2\hat{j} - \hat{k}$  of a force represented by  $3\hat{i} + \hat{k}$  acting through the point  $2\hat{i} - \hat{j} + 3\hat{k}$ ?

the point 
$$2\hat{i} - \hat{j} + 3\hat{k}$$
?  
(a)  $-3\hat{i} + 11\hat{j} + 9\hat{k}$  (b)  $3\hat{i} + 2\hat{j} + 9\hat{k}$ 

(d)  $\hat{i} + \hat{j} + \hat{k}$ 

(c)  $3\hat{i} + 4\hat{j} + 9\hat{k}$ 

What is the maximum value of  $16 \sin \theta - 12\sin^2 \theta$ ?

$$16 \sin \theta - 12 \sin^2 \theta?$$

(b)  $\frac{4}{3}$ 

(d) 4

What is the period of the function  $f(x) = \sin x$ ?

(c) 
$$\pi$$
 (d)  $2\pi$ 

If 
$$\int_{a}^{b} x^{3} dx = 0$$
 and  $\int_{a}^{b} x^{2} dx = \frac{2}{3}$ , then what are the

values of a and b respectively?

(a) 
$$-1, 1$$
 (b)  $1, 1$  (c)  $0, 0$  (d)  $2, -2$ 

What is 
$$\int_{0}^{1} x(1-x)^{9} dx$$
 equal to?

(a) 
$$\frac{1}{110}$$
 (b)  $\frac{1}{132}$ 

(c) 
$$\frac{1}{148}$$
 (d)  $\frac{1}{240}$ 

- If f(x) is an even function, whare  $f(x) \neq 0$ , then which one of the following is correct? (a) f'(x) is an even function.
- (b) f'(x) is an odd function.(c) f'(x) may be an even or odd function depending on the type of function.
- (d) f'(x) is a constant function.

What are the order and degree, respectively, of the differential equation

the differential equation 
$$\left(d^3y\right)^2 = u^4 + \left(dy\right)^5$$

- $\left(\frac{d^3y}{dx^3}\right)^2 = y^4 + \left(\frac{dy}{dx}\right)^5$ ?

  - - - (d) 5, 4

Consider the following statements:

- (1) Mean is independent of change in scale and change in origin.
- (2) Variance is independent of change in scale but not in origin.

Which of the above statements is/are correct?

(a) 1 only

**(b)** 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

Consider the following statements:

- (1) The sum of deviations from mean is always zero.
- (2) The sum of absolute deviations is minimum when taken around median.

Which of the above statements is/are correct?

(a) 1 only

**(b)** 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

The standard deviation  $\sigma$  of the first N natural numbers can be obtained using which one of the following formulae?

the following formulae?
$$N^2 - 1$$

$$N^2 - 1$$

(c)  $\sigma = \sqrt{\frac{N-1}{12}}$ 

the following formulae?

(a) 
$$\sigma = \frac{N^2 - 1}{12}$$

(b)  $\sigma = \sqrt{\frac{N^2 - 1}{12}}$ 

(d)  $\sigma = \sqrt{\frac{N^2 - 1}{6N!}}$ 

If C(20, n + 2) = C(20, n - 2), then what is *n* equal to? **(b)** 10 (a) 8 (d) 16 (c) 12 There are 10 points in a plane. No three of these points are in a straight line. What is the total number of straight lines which can be formed by joining the points? **(b)** 45

(d) 30

(a) 90

(c) 40

```
If A is an identity matrix of order 3, then its
inverse (A^{-1})
(a) is equal to null matrix
(b) is equal to A
(c) is equal to 3A
```

(d) does not exist A is a square matrix of order 3 such that its determinant is 4. What is the determinant of its transpose? (a) 64

(c) 32

**(b)** 36

| What is the | number of terms in th | ne expansion |
|-------------|-----------------------|--------------|
|             | $[2(2x+3y)^2]^2$ ?    | 1            |
| (a) 4       | (b) 5                 |              |

(d) 16

(c) 8

If A is a square matrix of order n > 1, then which one of the following is correct?

(a)  $\det (-A) = \det A$ 

**(b)** det  $(-A) = (-1)^n \det A$ (c)  $\det (-A) = -\det A$ 

(d)  $\det (-A) = n \det A$ 

What is the least value of 25  $\csc^2 x + 36 \sec^2 x$ ?

**(b)** 11 (a) 1 (d) 121

## Consider the following for the next 02 (two) items:

Let A and B be  $(3 \times 3)$  matrices with det A = 4 and det B = 3.

What is det (2AB) equal to?

(a) 96 (b) 72

(c) 48 (d) 36

What is det  $(3AB^{-1})$  equal to?

(a) 12 (b) 18

(c) 36 (d) 48

| What is the valu | e of tan 75° + cot 75°? |
|------------------|-------------------------|
| (a) 2            | (b) 4                   |
| (c) $2\sqrt{3}$  | (d) $4\sqrt{3}$         |

If  $\sin 2\theta = \cos 3\theta$ , where  $0 < \theta < \frac{\pi}{2}$ , then what is

 $\sin \theta$  equal to?

(a) 
$$\frac{\sqrt{5}+1}{4}$$
 (b)  $\frac{\sqrt{5}-1}{4}$ 

(c) 
$$\frac{\sqrt{5}+1}{16}$$
 (d)  $\frac{\sqrt{5}-1}{16}$ 

If the roots of the equation  $x^2 + px + q = 0$  are tan 9° and tan 26°, then which one of the following is correct?

(a) 
$$q - p = 1$$
  
(b)  $p - q = 1$   
(c)  $p + q = 2$   
(d)  $p + q = 3$ 

Consider the following statements:

(1) For an equation of a line,  $x\cos\theta + y\sin\theta = p$ , in normal form, the length of the perpendicular from the point  $(\alpha, \beta)$  to the line is

 $|\alpha\cos\theta + \beta\sin\theta + p|$ .

(2) The length of the perpendicular from the

point 
$$(\alpha, \beta)$$
 to the line  $\frac{x}{a} + \frac{y}{b} = 1$  is

$$\frac{a\alpha + b\beta - ab}{\sqrt{a^2 + b^2}}$$

which of the above statements is/are correct?

(a) 1 only

**(b)** 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

The sum of the focal distances of a point on an ellipse is constant and equal to the

- (a) length of minor axis
- (b) length of major axis
- (c) length of latus rectum(d) sum of the lengths of semi-major and semi-

minor axes

minor axes
The equation  $2x^2 - 3y^2 - 6 = 0$  represents

- (a) a circle (b) a parabola
- (c) an ellipse (d) a hyperbola

The centroid of the triangle with vertices A(2, -3, 3), B(5, -3, -4) and C(2, -3, -2) is the point (a) (-3, 3, -1)(b) (3, -3, -1)

(d) (-3, -1, -3)

(c) (3, 1, -3)

| What are the d    | irection cosines of z-axis? |
|-------------------|-----------------------------|
| (a) $< 1, 1, 1 >$ | <b>(b)</b> $< 1, 0, 0 >$    |
| (c) $< 0, 1, 0 >$ | (d) < 0, 0, 1 >             |

(a) 
$$\frac{d^2y}{dx^2} + y = 0$$
 (b)  $\frac{d^2y}{dx^2} + 2y = 0$ 

 $(\mathbf{d}) \ \frac{d^2y}{dx^2} + 4y = 0$ 

If  $y = a\cos 2x + b\sin 2x$ , then

(c)  $\frac{d^2y}{dx^2} - 4y = 0$ 

(a)  $\frac{a^x}{\ln(a)} + c$  (b)  $\frac{e^x}{\ln(a)} + c$ 

What is  $\int e^{x \ln(a)} dx$  equal to?

(c) 
$$\frac{e^x}{\ln(ae)} + c$$
 (d) 
$$\frac{ae^x}{\ln(a)} + c$$

Which one of the following is a square root of

$$2\sqrt{\frac{2}{12}}$$

$$2a + 2\sqrt{a^2 + b^2}$$
, where  $a, b \in \mathbb{R}$ ?

$$2a + 2\sqrt{a^2 + b^2}$$
, where  $a, b \in \mathbb{R}$ ?

(a)  $\sqrt{a+ib} + \sqrt{a-ib}$ 

where  $i = \sqrt{-1}$ .

(c) 2a + ib

$$2a + 2\sqrt{a^2 + b^2}$$
, where  $a, b \in \mathbb{R}$ ?

**(b)**  $\sqrt{a+ib}-\sqrt{a-ib}$ 

(d) 2a - ib

Suppose 20 distinct points are placed randomly on a circle. Which of the following statements is/are correct?

- 1. The number of straight lines that can be drawn by joining any two of these points is 380.
- 2. The number of triangles that can be drawn by joining any three of these points is 1140.

Select the correct answer using the code given below.

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

| What is the period of the function |
|------------------------------------|
| $f(x) = \ln(2 + \sin^2 x)?$        |

| f(x) | $= \ln(2 + \sin^2 x)?$ |              |  |
|------|------------------------|--------------|--|
| (a)  | $\frac{\pi}{2}$        | <b>(b)</b> π |  |

(c)  $2\pi$ 

(d)  $3\pi$ 

If 
$$\sum_{i=1}^{10} x_i = 110$$
 and  $\sum_{i=1}^{10} x_i^2 = 1540$  then what is the variance?

(a) 22 (b) 33



For how many values of k, is the matrix

$$\begin{bmatrix} 0 & k & 4 \\ -k & 0 & -5 \\ -k & k & -1 \end{bmatrix}$$
 singular?

(a) Only one (b) Only two (c) Only four (d) Infinite

What is  $\sin 3x + \cos 3x + 4 \sin^3 x - 3 \sin x + 3 \cos x - 4 \cos^3 x$  equal to?

(a) 0 (b) 1

(c)  $2 \sin 2x$  (d)  $4 \cos 4x$ The value of ordinate of the graph of

 $y = 2 + \cos x$  lies in the interval (a) [0, 1] (b) [0, 3](c) [-1, 1] (d) [1, 3]

What is the value of

8 cos 10°. cos 20°. cos 40°?

(a) tan 10° (b) cot 10° (c) cosec 10° (d) sec 10°

## Directions for the following three (03) items:

Read the following information and answer the three items that follow:

Let  $\alpha = \beta = 15^{\circ}$ .

What is the value of  $\sin \alpha + \cos \beta$ ?

(a) 
$$\frac{1}{\sqrt{2}}$$

(b) 
$$\frac{1}{2\sqrt{2}}$$

(c) 
$$\frac{\sqrt{3}}{2\sqrt{2}}$$

(d) 
$$\frac{\sqrt{3}}{\sqrt{2}}$$

What is the value of  $\sin 7\alpha - \cos 7\beta$ ?

(a) 
$$\frac{1}{\sqrt{2}}$$

(b) 
$$\frac{1}{2\sqrt{2}}$$

(c) 
$$\frac{\sqrt{3}}{2\sqrt{2}}$$

(d) 
$$\frac{\sqrt{3}}{\sqrt{2}}$$

Let p, q and r be three distinct positive real

number, If 
$$D = \begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix}$$
, then which one of

the following is correct? (a) 
$$D < 0$$
 (b)  $D \le 0$ 

(c) 
$$D > 0$$
 (d)  $D \ge 0$ 

Let ABC be a triangle. If D(2, 5) and E(5, 9) are the mid-points of the sides AB and AC respectively, then what is the length of the side BC? **(b)** 10 (a) 8

(d) 14

(c) 12

| Into  | how      | many     | compartments    | do | the |
|-------|----------|----------|-----------------|----|-----|
| coord | linate p | lanes di | vide the space? |    |     |
| (a) 2 |          |          | (b) 4           |    |     |
| (c) 8 | ,        |          | (d) 16          |    |     |

| If $\left  \vec{a} \times \vec{b} \right ^2 + \left  \vec{a} \cdot \vec{b} \right ^2 = 1$ | 144 and $ \vec{a}  = 4$ , | then what is |
|-------------------------------------------------------------------------------------------|---------------------------|--------------|
| $ \vec{b} $ equal to?                                                                     |                           |              |
| (a) 3                                                                                     | (b) 4                     |              |

(c) 6

(d) 8

$$\frac{2}{3}$$
 (b)  $\frac{4}{3}$ 

what is the value of k?

If  $\lim_{x\to 1} \frac{x^4 - 1}{x - 1} = \lim_{x\to k} \frac{x^3 - k^3}{x^2 - k^2}$ , where  $k \neq 0$ , then

(d) 4

| What is the minimum  | value of $ x-1 $ , where | 3 |
|----------------------|--------------------------|---|
| $x \in \mathbb{R}$ ? | , , ,                    |   |
| (a) 0                | (b) 1                    |   |
| (c) 2                | $(\mathbf{d})-1$         |   |

(d) - 1

What is the derivative of  $tan^{-1} x$  with respect to  $cot^{-1} x$ ?

(a) -1 (b) 1

 $\frac{1}{x^2+1}$  (d)  $\frac{x}{x^2+1}$ 

What is the minimum value of 
$$3\cos\left(A + \frac{\pi}{3}\right)$$
  
where  $A \in \mathbb{R}$ ?  
(a)  $-3$  (b)  $-1$ 

(d) 3

(c) 0